Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

نویسندگان

  • Naeem Saqib
  • Mattias Bäckström
چکیده

Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental assessment of incinerator residue utilisation.

Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for envi...

متن کامل

Industrial waste disposal alternatives in the process of aromatic compounds in petrochemical industry (case study: Nouri petrochemical complex, Asaluyeh, Iran

Application of aromatic compounds has dramatically increased as raw materials in various industries and different factories have been established to produce aromatic compounds. The current research aims at characterizing industrial waste generation in aromatics production process in petrochemical industries and determining the best feasible alternative for waste disposal. For this purpose, the ...

متن کامل

Industrial waste disposal alternatives in the process of aromatic compounds in petrochemical industry (case study: Nouri petrochemical complex, Asaluyeh, Iran

Application of aromatic compounds has dramatically increased as raw materials in various industries and different factories have been established to produce aromatic compounds. The current research aims at characterizing industrial waste generation in aromatics production process in petrochemical industries and determining the best feasible alternative for waste disposal. For this purpose, the ...

متن کامل

Bio-medical Waste Incinerator Ash: a Review with Special Focus on Its Characterization, Utilization and Leachate Analysis

Waste generation has increased considerably worldwide in the last few decades. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Waste generated from biomedical activities represents a real problem of living nature and human world. A proper waste management system should b...

متن کامل

Geochemistry and origin of elements of Upper Triassic Olang coal deposits in northeastern Iran

The Olang area is a part of Gheshlagh-Olang synclinal, which is a member of eastern Alborz coal basin and is situated at a distance of70 km northeast of Shahroud city. Coal-bearing strata of this region are part of the Shemshak group (Upper Triassic to Lower Jurassic).Samples from the 9 coal seams of the Olang coal deposits were collected and ashed. The aim of this study is to determine theoccu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015